Non - spherical core collapse supernovae

نویسندگان

  • K. Kifonidis
  • T. Plewa
  • L. Scheck
  • H. - Th. Janka
  • E. Müller
چکیده

Two-dimensional simulations of strongly anisotropic supernova explosions of a nonrotating 15 M ⊙ blue supergiant progenitor are presented, which follow the hydrodynamic evolution from times shortly after shock formation until hours later. It is shown that explosions which around the time of shock revival are dominated by low-order unstable modes (i.e. by a superposition of the l = 2 and l = 1 modes, in which the former is strongest), are consistent with all major observational features of SN 1987 A, in contrast to models which show high-order mode perturbations only and were published in earlier work. Among other items, the low-mode models exhibit final iron-group velocities of ∼ 3300 km/s, strong mixing at the He/H composition interface, with hydrogen being mixed downward in velocity space to only 500 km/s, and a final prolate anisotropy of the ejecta with a major to minor axis ratio of about 1.6. The success of low-mode explosions with an energy of about 2 × 10 51 erg to reproduce these observed features is based on two effects: the (by 40%) larger initial maximum velocities of metal-rich clumps compared to our high-mode models, and the initial global deformation of the shock. The first effect protects the (fastest) clumps from interacting with the strong reverse shock that forms below the He/H composition interface, by keeping their propagation timescale through the He-core shorter than the reverse shock formation time. This ensures that the outward motion of the clumps remains always subsonic, and that thus their energy dissipation is minimal (in contrast to the supersonic case). The second effect is responsible for the strong inward mixing of hydrogen: The aspherical shock deposits large amounts of vorticity into the He/H interface layer at early times (around t = 100 s). This triggers the growth of a strong Richtmyer-Meshkov instability that results in a global anisotropy of the inner ejecta at late times (i.e. around t = 10 000 s), although the shock itself has long become spherical by then. The simulations suggest a coherent picture, which explains the observational data of SN 1987 A within the framework of the neutrino-driven explosion mechanism using a minimal set of assumptions. It is therefore argued that other paradigms, which are based on (more) controversial physics, may not be required to explain this event.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-spherical core collapse supernovae and nucleosynthesis

Motivated by observations of supernova SN1987A, various authors have simulated Rayleigh–Taylor (RT) instabilities in the envelopes of core collapse supernovae (for a review, see [1]). The non-radial motion found in these simulations qualitatively agreed with observations in SN1987A, but failed to explain the extent of mixing of newly synthesized Ni quantitatively. Here we present results of a 2...

متن کامل

Stability of Standing Accretion Shocks, with an Eye toward Core Collapse Supernovae

We examine the stability of standing, spherical accretion shocks. Accretion shocks arise in core collapse supernovae (the focus of this paper), star formation, and accreting white dwarfs and neutron stars. We present a simple analytic model and use timedependent hydrodynamics simulations to show that this solution is stable to radial perturbations. In two dimensions we show that small perturbat...

متن کامل

The Spherical Accretion Shock Instability in the Linear Regime

We use time-dependent, axisymmetric, hydrodynamic simulations to study the linear stability of the stalled, spherical accretion shock that arises in the post-bounce phase of core-collapse supernovae. We show that this accretion shock is stable to radial modes, with decay rates and oscillation frequencies in close agreement with the linear stability analysis of Houck and Chevalier. For non-spher...

متن کامل

Spectropolarimetry of Supernovae

Overwhelming evidence has accumulated in recent years that supernova explosions are intrinsically 3-dimensional phenomena with significant departures from spherical symmetry. We review the evidence derived from spectropolarimetry that has established several key results: virtually all supernovae are significantly aspherical near maxim light; core-collapse supernovae behave differently than ther...

متن کامل

Growth of a Vortex Mode during Gravitational Collapse Resulting in Type II Supernova

We investigate stability of a gravitationally collapsing iron core against non-spherical perturbation. The gravitationally collapsing iron core is approximated by a similarity solution for dynamically collapsing polytropic gas sphere. We find that the similarity solution is unstable against non-spherical perturbations. The perturbation grows in proportion to (t − t0) −σ while the the central de...

متن کامل

Hypernovae, Black-hole-forming Supernovae, and First Stars

Recent studies of core-collapse supernovae have revealed the existence of two distinct classes of massive supernovae (SNe): 1) very energetic SNe (Hypernovae), whose kinetic energy (KE) exceeds 10 erg, about 10 times the KE of normal core-collapse SNe, and 2) very faint and low energy SNe (E ∼ < 0.5 × 10 erg; Faint supernovae). These two classes of supernovae are likely to be ”black-hole-formin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005